A brief hiatus……

My apologies dear SIWG members and followers of this blog for the brief hiatus in blog posts. As you can imagine with the opening of borders with the advent of the COVID vaccines, there has been a race to catch up fieldwork and sample collections. As a result, the contributions from researchers have slowed to a halt.

In addition, I will be moving from ICArEHB in Portugal (☹) to a new position in Berlin at the DAI (😊) as their new archaeozoologist. This has meant that I have been focused on finishing academic and personal projects before my family and I move to Berlin in December. I am very sad to be leaving Portugal, but we have built an amazing new isotope preparation lab and I will continue to be providing support to the ICArEHB family in stable isotopes and archaeozoology. But I am also very excited to start at the DAI, and looking forward to building new projects with colleagues in Germany and across the world.

To kick start the new ‘term/semester’, I have been thinking of blog posts about open access databases (IsoArch, ISOBANK and Neotoma), following on from Suzanna Pilaar-Birch’s workshop with the Neotoma database, and discussing the merits of each and which one you should choose; to ensuring good standards of reporting methods and results for transparency. However, I thought I would start the to start with a discussion about landscape reconstruction.

Last week, I published together with my colleagues from Kiel and Belgrade, a paper about the livestock management and land-use during the late Vinča period in Serbia at the incredible sites of Vinča-Belo brdo and Stubline. This study is a part of a large sampling program of bones and teeth from domesticate and wild animals from the two sites. Our first paper concerned the stable isotope results from bone collagen. In this paper, we found a large variability in δ13C/δ15N results in cattle from Vinča-Belo brdo in comparison form cattle from Stubline, who may have been pastured in forested/wetland areas. While sheep and pigs appeared to have been fed similar diets possibly being kept within the settlements. Wild animals, mainly deer and wild pigs, ranged wide habits including forests (figure of results).

The results from stable carbon and nitrogen isotopic analysis of bone collagen samples from Vinča-Belo brdo.
The results from stable carbon and nitrogen isotopic analysis of bone collagen samples from Stubline.

The recently published paper in PLOS-ONE focused on the results from the sequential sampling of bioapatite from cattle, sheep/goat, pig, and deer teeth. Sequential sampling allows an examination of individual life histories, via δ18O/δ13C. The oxygen isotope provides a seasonal framework to examine variation in plant δ13C foliar values. Carbon isotopes can detect different plant types e.g. C3 plants which a predominant plant type found in Serbia. The carbon isotopes of C3 plants are particularly sensitive to changes in their growing conditions 1. Our results echoed the results from the bone collagen analysis but also provided more clarity about the types of pasture that different species may have used and highlighted potential differences in management practices for sheep and cattle.

The variation seen in cattle bone collagen prevailed in the bioapatite samples, with little similarity between individuals (see here). Some individuals were grazed with open environments while others may have been kept for parts of the year in forested/waterlogged environments. Whereas sheep appeared to be managed very similar at both sites with little variation between individuals (see here). What is intriguing is the variation in δ13C from   ̶ 8‰ to   ̶ 14‰, with the depleted values occurring during winter.

We proposed that this variation was in part by plants growing under high temperatures during summer, perhaps within halophyte communities within relic river channels, when one considers the dynamic fluvial landscape of the Danube. During winter, herds may have been kept within the settlements and fed on collected fodder, such as leafy hay from riverine forest environments. Overall, it supports a uniform herding strategy in contrast with that of cattle.

Pasture reconstruction based on study results. The base images were made available on the ‘Nature scenes with fields’ https://www.vecteezy.com/vector-art/605564-nature-scenes-with-fields-and-mountians licensed to REG. The animal silhouettes are available under CC 4.0 from ArcheoZoo.org.

This is one interpretation of the results, and another group of researchers may interpret the data differently, for example Balasse et al. 20172. Balasse et al. (including myself) studied the material from Popină Borduşani along with other Late Neolithic/Eneolithic sites from the Danubian corridor in Romania. Again, bone collagen and enamel bioapatite wild and domesticated animals were analysed providing a multi-faceted view of animal management. Similar enriched carbon isotope values were interpreted as potential the consumption of C4 plants growing as weeds near the settlement.

These studies highlight differences in pasture use and management that may occur in similar environments. To increase our understanding of past herding practices, future studies need carry out comprehensive sampling and analytical programs of wild and domesticated animals from well preserved archaeological sites, where both bone collagen and enamel bioapatite ared analysed. This would allow for greater resolution of past husbandry practices as well as the landscape in which these herds lived and died.

To move forward to create better interpretive frameworks, we need to build detailed databases of carbon and nitrogen, as well as other isotopes, from ecological studies and analysis of local reference material much in the way is crucial for Strontium isotopes studies. We may never be able to say definitively sheep X lived off a diet of turnips in the winter and rich clover meadows during summer. But we can move to increasing the resolution of past herding strategies via improved sampling and multi-isotopic approaches.

1             Tieszen, L. T. Natural variations in the carbon isotope values of plants: Implications for Archaeology, Ecology and Paleoecology. Journal of Archaeological Science 18, 227-248 (1991).

2             Balasse, M. et al. Investigating the scale of herding in Chalcolithic pastoral communities settled along the Danube River in the 5th millennium BC: A case study at Borduşani-Popină and Hârşova-tell (Romania). Quat. Int. 436, 29-40, doi:10.1016/j.quaint.2015.07.030 (2017).

 Prehistoric Turkey Husbandry

Emily Lena Jones is an assistant professor of Anthropology at the University of New Mexico, Cyler Conrad is a Ph.D. graduate student in the Department of Anthropology at the University of New Mexico, and Seth Newsome is an assistant professor of Biology at the University of New Mexico. This post describes their collaborative research at the UNM Center for Stable Isotopes on prehistoric turkey husbandry in the American Southwest.

Maize Fed or Wild Diet?

Turkeys (Meleagris gallopavo) were used for a variety of economic purposes in the prehistoric American Southwest (Lang and Harris 1984). Turkeys were eaten; their feathers were used for blanket production; and their eggs were both consumed for food and used as binders in paint tempera formation. Ancient DNA evidence indicates prehistoric Southwesterners made use of both the wild Merrriam’s turkey (Meleagris gallopavo merriami) and a domestic turkey, which was genetically distinct from both Merriam’s and the Mexican domestic turkey (Speller et al. 2010).

fig 1
Figure 1. A male Merriam’s turkey displaying for a female hen in South Dakota (Image from the U.S. Fish and Wildlife Service: http://bit.ly/1zD3DAV)

Previous stable carbon (δ13C) and nitrogen (δ15N) isotope studies of Southwestern turkeys suggest that prehistorically, turkeys were predominately fed maize (Kellner et al. 2010; McCaffery et al. 2014; Rawlings and Driver 2010). Maize is a C4 plant, and the turkey bones so far sampled display a strong C4 signal (Figure 2).

Stable Isotope Research

Figure 2. Bone collagen data from turkeys in five different sites throughout the American Southwest. Note range of dates and cluster of isotope data near -12‰, suggesting a predominantly maize diet. [a]-Kellner et al. 2010 [b]-Rawlings and Driver 2010 [c]-McCaffery et al. 2014
Figure 2. Bone collagen data from turkeys in five different sites throughout the American Southwest. Note range of dates and cluster of isotope data near -12‰, suggesting a predominantly maize diet. [a]-Kellner et al. 2010 [b]-Rawlings and Driver 2010 [c]-McCaffery et al. 2014

Although previous studies have shown a remarkably consistent picture of turkey husbandry, the sample size from these studies is still relatively small.In addition, most of these studies have focused on sites in the Four Corners region or in Northern New Mexico. We are working to expand this sample to include turkeys from sites from the Middle Rio Grande Valley as well as more sites from high elevations or other “marginal” areas. We are analyzing both turkey bone collagen and apatite to understand the spacing and relationship between organic and inorganic isotope systems (Figure 3). Our data, from sites including Tijeras Pueblo (LA 581), Arroyo Hondo Pueblo (LA 12), and Chamisal Pueblo (LA 22765), suggests a more complex pattern of turkey husbandry practices than has been previously documented for the American Southwest. Within at least some contexts there appears to be a mix of maize-fed and wild-diet turkeys. We look forward to processing more samples and sharing our results in future publications and posts!

fig 3
Figure 3. Turkey bone specimens from Tijeras Pueblo being sonicated after emersion in a bath of 2:1 chloroform/methanol for lipid removal and collagen purification



Kellner, Corina M., Margaret J. Schoeninger, Katherine Spielmann and Katherine Moore. 2010. Stable Isotope Data Show Temporal Stability in Diet at Pecos Pueblo and Diet Variation among Southwest Pueblos. In Morgan, Michèle E. (ed.) Pecos Pueblo Revisited: The Biological and Social Context. Cambridge, Peabody Museum of Archaeology and Ethnology.

Lang, Richard and Arthur Harris. 1984. The Faunal Remains From Arroyo Hondo Pueblo, New Mexico: A Study in Short- Term Subsistence Change. Santa Fe, School of American Research Press.

McCaffery, Harlan, Robert H. Tykot, Kathy Durand Gore and Beau R. DeBoer. 2014. Stable Isotope Analysis of Turkey (Meleagris Gallopavo) Diet from Pueblo II and Pueblo III Sties, Middle San Juan Region, Northwest New Mexico. American Antiquity 79(2): 337-352.

Rawlings, Tiffany A. and Jonathan C. Driver. 2010. Paleodiet of domestic turkey, Shields Pueblo (5MT3807), Colorado: isotopic analysis and its implications for care of a household domesticate. Journal of Archaeological Science 37: 2433-2441.

Speller, Camilla F., Brian M. Kemp, Scott D. Wyatt, Cara Monroe, William D. Lipe, Ursula M. Arndt and Dongya Y. Yang. 2010. Ancient mitochondrial DNA analysis reveals complexity of indigenous North American turkey domestication. Proceedings of the National Academy of Sciences 107(7): 2807-2812.

Fish for the City

We’re back with new blog posts after a short summer hiatus. Our first post of the academic year (which has already begun for some of us in the US!) comes from David Orton, who is currently an Early Career Research Fellow on the EUROFARM project at University College London, where he is also a Teaching Fellow in Zooarchaeology. Here he shares research that was conducted during his previous postdoctoral fellowship at the McDonald Institute for Archaeological Research at the University of Cambridge, which was recently published in Antiquity.

A Meta-analysis of Archaeological Cod Remains as a Tool for Understanding the Growth of London’s Northern Trade

The backstory to this research comes in two parts. First, a landmark zooarchaeological study by James Barrett and colleagues (2004) demonstrated an explosion in marine fish consumption in England within a few decades of AD1000.  Before this event – dubbed the ‘Fish Event Horizon’ (FEH) in tribute to Douglas Adams – sea fishing seems to have been rare and small-scale.

Potential source regions and isotopic signatures for archaeological cod bones. Cross-hairs show one standard deviation ranges. Images taken from Orton et al. 2011 under CC BY license.

Second, James and his team applied stable isotope provenancing of cod bones to test whether this FEH represented a local phenomenon or the early onset of long distance trade from northern waters (full disclosure: I joined the project towards the end of this stage, in 2010). δ13C and δ15N signatures were established for six potential fishing regions using 259 samples from more than 10 countries. Applying this ‘target’ specimens from 23 (post)medieval sites around the North Sea (Barrett et al. 2011) and Baltic (Orton et al. 2011), we showed that a significant trade in northern cod existed by the 13th-14th centuries, but that the initial FEH in England primarily entailed local fishing. This raised more questions: when exactly did the trade start, how suddenly, and did the imported fish supplement or replace local catches?

Our new study, just published in Antiquity, combines a new zooarchaeological meta-analysis with the existing isotopic results to tell a clear story regarding cod imports to the city of London. Both elements rely on the same principle: that cod were traditionally decapitated before preservation for long-range trade, and that cranial elements thus normally represent relatively local catches. This allowed us to use head bones to establish regional isotopic signatures in the previous isotope work, but it also means that the cranial:postcranial ratio in consumer sites like London can be a rough index for the relative contribution of imports. We simply compiled all the raw data we could find on well-dated cod bones – almost 3000 specimens from 95 sites, including large datasets from Alison Locker and from MOLA – and plotted it using context-level date ranges.

Stable isotopic provenancing results for 34 archaeological cod vertebrae and cleithra from various London sites (A; data from Barrett et al. 2011) set against AD 700–1700 detail of the estimated frequency distributions (B). Figure taken from Orton et al. 2014 under CC BY license.

The data show a very sudden switch to imports in the early/mid 13th C, with frequency of cranial bones dropping off just as the number of vertebrae increases sharply. This fits the isotopic results remarkably well: before about AD1250 almost all sampled specimens seem to be local; afterwards the majority are probable imports. Locally caught cod thus seem to have been substantially and rapidly replaced in Londoners’ diet by traded fish almost 800 years ago. What this meant for the local fishing industry is uncertain, but should become clearer when we look at other towns and species.

Biomolecular provenancing has a unique ability to provide direct evidence for the source of imported bones, but its cost and destructiveness ultimately limit sample sizes and hence the reliability and resolution of the stories it can tell. Integrating it with the much larger samples that can be marshalled from meta-analyses of conventional zooarchaeological data has great potential to overcome this problem.


Orton DC, Morris J, Locker A and Barrett JH (2014) Fish for the City: meta-analysis of archaeological cod remains as a tool for understanding the growth of London’s northern trade. Antiquity 88, 516-530.
[link: http://antiquity.ac.uk/ant/088/ant0880516.htm%5D

Orton DC, Makowiecki D, de Roo T, Johnstone C, Harland J, Jonsson L et al. (2011) Stable Isotope Evidence for Late Medieval (14th–15th C) Origins of the Eastern Baltic Cod (Gadus morhua) Fishery. PLoS ONE 6, e27568.
[DOI: 10.1371/journal.pone.0027568]

Barrett J, Orton D, Johnstone C, Harland J, Van Neer W, Ervynck A et al. (2011) Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. Journal of Archaeological Science 38, 1516-24.
[DOI: 10.1016/j.jas.2011.02.017]

Barrett JH, Locker AM, and Roberts CM (2004b) The origins of intensive marine fishing in medieval Europe: the English evidence. Proceedings of the Royal Society of London. Series B: Biological Sciences 271, 2417-21. [DOI: 10.1098/rspb.2004.2885]

From the Balkans to Barbuda

A number of new and exciting projects are focused on incorporating several techniques in zooarchaeology, including stable isotope analysis, to better understand the complex and intertwined history of humans and certain animals. In this post, Dr. Holly Miller shares some of the goals of one such ongoing research scheme: The Fallow Deer Project.

The Fallow Deer Project

The Fallow Deer Project is an AHRC-funded multi-disciplinary study looking at the cultural history of Dama dama dama, the European fallow deer. As one of two Research Fellows on the project, my role is to investigate the biogeography and management of fallow deer through time. To do this, I am using a combination of isotope analyses (C, N, Sr, S, O) to look in depth at the archaeological remains of ancient and modern fallow deer populations, investigating questions related to the importation of animals, founding herds and changing management practices. Were fallow deer domesticated? Under what circumstances were fallow deer established across Europe? How do human-Dama relationships reveal worldview?

The Fallow Deer Project Logo
The Fallow Deer Project Logo

No other species of deer has a closer relationship to people than the European fallow deer, and it is becoming clear that this has been the case for millennia. Since the Neolithic, humans have selectively transported and maintained these elegant animals, moving herds from their native, post-glaciation, range in the eastern Mediterranean, across Europe and eventually the globe. Fallow deer are now one of the world’s most widely-naturalised animals. Wherever they have been introduced they have altered the physical and psychological landscape, and their distribution is a direct record of human migration, trade, behaviour and ideology. In combination with studies of archaeology, history, geography, anthropology, genetics, and osteological research, isotope analysis is being used reveal the cultural significance of the fallow deer as they moved from the Balkans to Barbuda, and everywhere in between.

Assorted fallow deer bones
Assorted fallow deer bones

The project is led by Dr Naomi Sykes (University of Nottingham) Prof. Rus Hoelzel (University of Durham) and Prof. Jane Evans (British Geological Survey). The team are working with researchers from a number of fields and institutions up and down the UK- from archaeologists and art historians, to musicians and deer stalkers.

Web: http://www.fallow-deer-project.net

Tweet: @DeerProject

Make use of/contribute to our deer bone database: http://www.nottingham.ac.uk/zooarchaeology/deer_bone/search.php

Introducing the i-bone Project

This contribution comes from Dr. Thomas Doppler, who is based at the University of Basel, Switzerland, at the Integrative Prähistorische und Naturwissenschaftliche Archäologie (IPNA) (Integrative Prehistory and Archaeological Science) and the Department of Environmental Sciences. We’ve also added the IPNA to our list of stable isotope facilities-get in touch if we’re missing yours!

Isotope analysis of well dated cattle and red deer bones from Swiss Neolithic lakeshore settlements as indicator for herd management, dairying, environment and human impact

The project (April 2013 to March 2016, based at the University of Basel, Switzerland) aims at studying cattle economy and cattle management on one hand and human impact on the red deer population on the other, as represented in the archaeology of the Swiss lakeshore dwellings.

Organic remains are well preserved at the site of Arbon Bleiche 3. Photograph: © Amt für Archäologie Thurgau, Daniel Steiner.
Organic remains are well preserved at the site of Arbon Bleiche 3. Photograph: © Amt für Archäologie Thurgau, Daniel Steiner.

These dwellings – dated between 4300 and 2400 BC – have the richest and most detailed archaeological record in Europe, and provide a unique background for the examination of models of subsistence, intensification, cultural adaptations to climatic changes and human impact to the prehistoric environment. Waterlogged deposits have preserved many organic remains such as wood, seeds, animal dung; and hundreds of thousands of animal bones have been recovered. Based on dendrochronology the archaeological finds can be dated precisely at least to decades but even to single years, allowing a longitudinal study with unprecedented time resolution.

We focus our research on the eastern area of Switzerland, especially on the lakeshore settlement of Arbon Bleiche 3 at Lake Constance and sites in the lower Lake Zurich region, where vast and well documented archaeozoological collections cover a long chronological sequence of settlements in a small and clearly defined region.

Map showing the location of the study sites in Switzerland, including Arbon Bleiche 3 at Lake Constance and a range of sites in the lower Lake Zurich region. Figure: © IPNA, Thomas Doppler.
Map showing the location of the study sites in Switzerland, including Arbon Bleiche 3 at Lake Constance and a range of sites in the lower Lake Zurich region. Figure: © IPNA, Thomas Doppler.

The research questions will be addressed using carbon, nitrogen, oxygen and strontium isotope analyses on animal bones and high-crowned cattle and deer molars.

The project is financed by Swiss National Science Foundation and supported by different institutions in Switzerland, Germany and Great Britain. For further information see www.i-bone.ch


Chickens from Beyond the Grave

We’re continuing our series of posts this month with a piece by Elizabeth Farebrother, who is currently working towards her PhD at University College London investigating changing animal use in Western Asia during the Neolithic and Bronze Ages. Here, she shares her MSc research, which was part of the ongoing, multidisciplinary Chicken Project. Thanks to Liz and the Chicken Project Team for contributing!

An Integrated Faunal-centric approach to Stable Isotope Analysis at Wien-Csokorgasse Cemetery   

The integration of zooarchaeological research and stable isotope analysis can be incredibly insightful, allowing us to go beyond traditional research questions, and investigate, where relevant, socially-grounded questions from a scientific perspective. My introduction to the world of stable isotope research came through the AHRC-funded Chicken Project, and my MSc formed part of this ongoing collaborative research initiative to investigate human-fowl interaction.

Belle, a Nottingham local
Belle, a Nottingham local.

Wien-Csokorgasse – an Avar-period (6th-8th Century AD) cemetery site – is located in Vienna, Austria, and was excavated as a rescue operation in the 1970s. Zooarchaeologist Henriette Kroll carried out the faunal analysis for the site, and noted that the deposition of chickens within human burial contexts was both sexually, and hierarchically stratified; cocks were buried with males and hens were buried with females. Significantly, the length of each cockerel’s tarsometatarsus spur also corresponded with the inferred status of the human burial (Kroll, 2013).

Chicken bone is demineralised in order to extract the collagen for isotopic analysis.
Chicken bone is demineralised in order to extract the collagen for isotopic analysis.

To investigate the potential reasons for the inclusion of chickens within burials at Wien-Csokorgasse, carbon and nitrogen isotope ratios from the bone collagen of each bird were analysed and compared with the existing stable isotope study of the humans they were buried with (Herold, 2008). Prospective indicators for dietary differentiation, including biological sex, age, and cemetery chronology were explored. Perhaps the most striking result was the dietary correlation represented by δ15N values. This dietary signature would have built up in the bone collagen over differing life spans between human and chicken. To this end, the data suggest a significant overlapping period of time where each chicken may have lived alongside the human individual they were buried with.

Preliminary carbon and nitrogen isotope results for human burials and associated chickens.
Preliminary carbon and nitrogen isotope results for human burials and associated chickens.

The results of dietary stable isotope analysis were viewed through the lens of anthropological analogy, and interpretation included a diachronic survey of published and grey literature of contemporary bird iconography and bird diet in Europe. This meant that the wider social implications and behavioural patterns amongst the groups who used Wien-Csokorgasse were also considered in the study.


Thank you to all involved in the production of this MSc dissertation. This study would not have been possible without the help and expert guidance of the AHRC-funded Chicken Project, Dr Naomi Sykes, Dr Holly Miller, Dr Henriette Kroll, the NERC Isotope Geosciences Laboratory (BGS Keyworth) and the University of Nottingham.


Herold, M. (2008) ‘Sex Differences in Mortality in Lower Austria and Vienna in the Early Medieval Period’ Doctoral dissertation, University of Vienna.

Kroll, H. (2013) ‘Ihrer Hühner waren drei und ein stolzer Hahn dabei: Überlegungen zur Beigabe von Hühnern im awarischen Gräberfeld an der Wiener Csokorgasse.’ in von Carnap-Bornheim, C., Dörfler, W., Kirleis, W., Müller, J. and Müller, U. (eds.) Festschrift für Helmut Johannes Kroll. Offa 69/70.

Rethinking Mycenaean Economy

Stable isotope analysis in zooarchaeology is an exciting–and growing–research area, with the potential to inform and expand on  a multitude of questions about humanity in the past, present, and future.

Part of the mission of the working group and the purpose of our blog is to share ongoing research in this area with a wider audience. To that end, we’re launching a series of posts on current projects combining zooarchaeology and stable isotope analysis in innovative ways around the world and in all time periods. If you would like to contribute a post on your research, you can email suzanne_birch [at] brown.edu. Comments and questions on posts are welcomed and encouraged!

Our first post is by Gypsy Price, who is currently a PhD candidate in the Anthropology Department at the University of Florida. Her research uses stable isotope analysis to reveal differences in faunal economies in early complex societies, specifically Late Bronze Age (LBA) Mycenae, Greece. Thanks Gypsy!

Faunal Economy at Petsas House

View of Mycenae, with a plan of the citadel and location of Petsas House indicated by the red circle.
View of Mycenae, with a plan of the citadel and location of Petsas House indicated by the red circle.

Five years ago I got involved with the Petsas House Project, a domestic/industrial structure located downslope from the citadel of Mycenae dating to the Late Helladic III A2 (circa 1300 BC). Around the same time I had become increasingly captivated by Galaty and Parkinson’s “Rethinking Mycenaean Palaces” series which critically examined the extent, degree, and manner of economic authority engendered by Mycenaean palaces. Bottom line, the majority of our knowledge about Mycenaean economy is based on Linear B tablets, which are geographically, temporally, and topically restricted: they have only been recovered from a handful of palatial sites, and record only transactions of interest to palatial administration occurring in the months prior to their deposition. As a result, economic models have been constructed from the top down, resulting in a myopic sense of the movement of resources within the larger society and an artificial inflation of the influence of the palace.

Through isotopic survey, we can discern feeding groups that may be indicative of disparities in provisioning or foddering strategies, and patterns of importation of animals. It was here where I realized that the extremely well-preserved and extensive faunal assemblage at Petsas House could offer a unique, micro-scalar perspective on management and distribution of faunal resources in an extra-palatial industrial/domestic context with a palatial settlement. Furthermore, there was an available contemporaneous faunal assemblage which had been previously excavated from the Cult Center, an ideological complex located within the walls of the hilltop citadel.

Gypsy Price with Petsas House materials
Gypsy Price with Petsas House materials.

Thus, with the invaluable support of Dr. Kim Shelton (UC Berkeley) and my committee chair, Dr. John Krigbaum (University of Florida), my PhD research was born. My sample set includes four main species known to have been purposefully managed during the LBA: goat, sheep, cow, and pig/wild boar. I am using carbon (δ13C), nitrogen (δ15N), and oxygen (δ18O) ratios from bone collagen and bone apatite fractions to identify discrete inter- and intra-taxonomic feeding groups. Strontium (87Sr/86Sr) and oxygen (δ18O) isotope ratios from bone and serially sampled teeth are being used to identify season movement patterns and to look for evidence of extra-local individuals which may be indicative of importation. I am currently in the process of interpreting the structured variation in these data to elucidate some of the nuances of LBA Mycenaean faunal economy, allowing us to develop a “ground-truthed” model of management and distribution between disparate sectors of a single LBA Mycenaean palatial settlement for the first time.