From the Balkans to Barbuda

A number of new and exciting projects are focused on incorporating several techniques in zooarchaeology, including stable isotope analysis, to better understand the complex and intertwined history of humans and certain animals. In this post, Dr. Holly Miller shares some of the goals of one such ongoing research scheme: The Fallow Deer Project.

The Fallow Deer Project

The Fallow Deer Project is an AHRC-funded multi-disciplinary study looking at the cultural history of Dama dama dama, the European fallow deer. As one of two Research Fellows on the project, my role is to investigate the biogeography and management of fallow deer through time. To do this, I am using a combination of isotope analyses (C, N, Sr, S, O) to look in depth at the archaeological remains of ancient and modern fallow deer populations, investigating questions related to the importation of animals, founding herds and changing management practices. Were fallow deer domesticated? Under what circumstances were fallow deer established across Europe? How do human-Dama relationships reveal worldview?

The Fallow Deer Project Logo
The Fallow Deer Project Logo

No other species of deer has a closer relationship to people than the European fallow deer, and it is becoming clear that this has been the case for millennia. Since the Neolithic, humans have selectively transported and maintained these elegant animals, moving herds from their native, post-glaciation, range in the eastern Mediterranean, across Europe and eventually the globe. Fallow deer are now one of the world’s most widely-naturalised animals. Wherever they have been introduced they have altered the physical and psychological landscape, and their distribution is a direct record of human migration, trade, behaviour and ideology. In combination with studies of archaeology, history, geography, anthropology, genetics, and osteological research, isotope analysis is being used reveal the cultural significance of the fallow deer as they moved from the Balkans to Barbuda, and everywhere in between.

Assorted fallow deer bones
Assorted fallow deer bones

The project is led by Dr Naomi Sykes (University of Nottingham) Prof. Rus Hoelzel (University of Durham) and Prof. Jane Evans (British Geological Survey). The team are working with researchers from a number of fields and institutions up and down the UK- from archaeologists and art historians, to musicians and deer stalkers.

Web: http://www.fallow-deer-project.net

Tweet: @DeerProject

Make use of/contribute to our deer bone database: http://www.nottingham.ac.uk/zooarchaeology/deer_bone/search.php

Introducing the i-bone Project

This contribution comes from Dr. Thomas Doppler, who is based at the University of Basel, Switzerland, at the Integrative Prähistorische und Naturwissenschaftliche Archäologie (IPNA) (Integrative Prehistory and Archaeological Science) and the Department of Environmental Sciences. We’ve also added the IPNA to our list of stable isotope facilities-get in touch if we’re missing yours!

Isotope analysis of well dated cattle and red deer bones from Swiss Neolithic lakeshore settlements as indicator for herd management, dairying, environment and human impact

The project (April 2013 to March 2016, based at the University of Basel, Switzerland) aims at studying cattle economy and cattle management on one hand and human impact on the red deer population on the other, as represented in the archaeology of the Swiss lakeshore dwellings.

Organic remains are well preserved at the site of Arbon Bleiche 3. Photograph: © Amt für Archäologie Thurgau, Daniel Steiner.
Organic remains are well preserved at the site of Arbon Bleiche 3. Photograph: © Amt für Archäologie Thurgau, Daniel Steiner.

These dwellings – dated between 4300 and 2400 BC – have the richest and most detailed archaeological record in Europe, and provide a unique background for the examination of models of subsistence, intensification, cultural adaptations to climatic changes and human impact to the prehistoric environment. Waterlogged deposits have preserved many organic remains such as wood, seeds, animal dung; and hundreds of thousands of animal bones have been recovered. Based on dendrochronology the archaeological finds can be dated precisely at least to decades but even to single years, allowing a longitudinal study with unprecedented time resolution.

We focus our research on the eastern area of Switzerland, especially on the lakeshore settlement of Arbon Bleiche 3 at Lake Constance and sites in the lower Lake Zurich region, where vast and well documented archaeozoological collections cover a long chronological sequence of settlements in a small and clearly defined region.

Map showing the location of the study sites in Switzerland, including Arbon Bleiche 3 at Lake Constance and a range of sites in the lower Lake Zurich region. Figure: © IPNA, Thomas Doppler.
Map showing the location of the study sites in Switzerland, including Arbon Bleiche 3 at Lake Constance and a range of sites in the lower Lake Zurich region. Figure: © IPNA, Thomas Doppler.

The research questions will be addressed using carbon, nitrogen, oxygen and strontium isotope analyses on animal bones and high-crowned cattle and deer molars.

The project is financed by Swiss National Science Foundation and supported by different institutions in Switzerland, Germany and Great Britain. For further information see www.i-bone.ch

 

Rethinking Mycenaean Economy

Stable isotope analysis in zooarchaeology is an exciting–and growing–research area, with the potential to inform and expand on  a multitude of questions about humanity in the past, present, and future.

Part of the mission of the working group and the purpose of our blog is to share ongoing research in this area with a wider audience. To that end, we’re launching a series of posts on current projects combining zooarchaeology and stable isotope analysis in innovative ways around the world and in all time periods. If you would like to contribute a post on your research, you can email suzanne_birch [at] brown.edu. Comments and questions on posts are welcomed and encouraged!

Our first post is by Gypsy Price, who is currently a PhD candidate in the Anthropology Department at the University of Florida. Her research uses stable isotope analysis to reveal differences in faunal economies in early complex societies, specifically Late Bronze Age (LBA) Mycenae, Greece. Thanks Gypsy!

Faunal Economy at Petsas House

View of Mycenae, with a plan of the citadel and location of Petsas House indicated by the red circle.
View of Mycenae, with a plan of the citadel and location of Petsas House indicated by the red circle.

Five years ago I got involved with the Petsas House Project, a domestic/industrial structure located downslope from the citadel of Mycenae dating to the Late Helladic III A2 (circa 1300 BC). Around the same time I had become increasingly captivated by Galaty and Parkinson’s “Rethinking Mycenaean Palaces” series which critically examined the extent, degree, and manner of economic authority engendered by Mycenaean palaces. Bottom line, the majority of our knowledge about Mycenaean economy is based on Linear B tablets, which are geographically, temporally, and topically restricted: they have only been recovered from a handful of palatial sites, and record only transactions of interest to palatial administration occurring in the months prior to their deposition. As a result, economic models have been constructed from the top down, resulting in a myopic sense of the movement of resources within the larger society and an artificial inflation of the influence of the palace.

Through isotopic survey, we can discern feeding groups that may be indicative of disparities in provisioning or foddering strategies, and patterns of importation of animals. It was here where I realized that the extremely well-preserved and extensive faunal assemblage at Petsas House could offer a unique, micro-scalar perspective on management and distribution of faunal resources in an extra-palatial industrial/domestic context with a palatial settlement. Furthermore, there was an available contemporaneous faunal assemblage which had been previously excavated from the Cult Center, an ideological complex located within the walls of the hilltop citadel.

Gypsy Price with Petsas House materials
Gypsy Price with Petsas House materials.

Thus, with the invaluable support of Dr. Kim Shelton (UC Berkeley) and my committee chair, Dr. John Krigbaum (University of Florida), my PhD research was born. My sample set includes four main species known to have been purposefully managed during the LBA: goat, sheep, cow, and pig/wild boar. I am using carbon (δ13C), nitrogen (δ15N), and oxygen (δ18O) ratios from bone collagen and bone apatite fractions to identify discrete inter- and intra-taxonomic feeding groups. Strontium (87Sr/86Sr) and oxygen (δ18O) isotope ratios from bone and serially sampled teeth are being used to identify season movement patterns and to look for evidence of extra-local individuals which may be indicative of importation. I am currently in the process of interpreting the structured variation in these data to elucidate some of the nuances of LBA Mycenaean faunal economy, allowing us to develop a “ground-truthed” model of management and distribution between disparate sectors of a single LBA Mycenaean palatial settlement for the first time.