Save the Date! The 2016 Stable Isotopes in Zooarchaeology Meeting

The first meeting of the Stable Isotopes in Zooarchaeology Working Group (SIZWG) will take place 3-5 March 2016 at the University of Georgia in Athens, Georgia, USA.

The University is home to the Center for Applied Isotope Studies and the Zooarchaeology Laboratory at the Georgia Museum of Natural History, which houses over 4,000 specimens in its comparative collection. Athens is a very walkable city about 70 miles east of Atlanta, GA, with plenty of accommodation and restaurant choices.

Planning is currently underway, and further information regarding abstract submission, registration, and travel will be available via the conference website, currently in development.

If you have any questions or would like to be involved in organization, please don’t hesitate to get in touch with the group coordinators, Suzanne Pilaar Birch (sepbirch[at]uga.edu) and Catherine West (cfwest[at]bu.edu).

The View from San Rafael

The 12th International Council for Archaeozoology meeting took place just a little over a month ago in San Rafael, Argentina. I submitted a report on the results of the Stable Isotopes in Zooarchaeology Working Group meeting for the Fall 2014 edition of the ICAZ newsletter, due out shortly and reproduced below.

20140924_200015
Part of our banquet meal-perfect for a bunch of zooarchaeologists!

The meeting was a great success, with lots of interesting papers combining stable isotope methods with a variety of osteological analyses. One of the sessions I gave a paper in was “Stories Written in Teeth”, organized by Florent Rivals, which had papers ranging from serial and bulk sampling of teeth for stable isotope analysis, meso- and microwear studies, cementochronology, and oral pathology, among others. I also attended “Recent Advances in Biomolecular Archaeology”, which also had some good stable isotope papers in addition to DNA-focused ones, and was organized by Jessica Metcalf and Ross Barnett. The opening reception and banquet dinner were highlights. And of course, no conference would be complete without a stop at the local natural history museum.

20140927_101104
A Smilodon specimen at the local San Rafael Museo de Ciencia Natural.

For those who follow the working group but aren’t ICAZ members (recommended!) I’m reproducing that text here:

Members of the Stable Isotopes in Zooarchaeology (SIZ) Working Group came together for the first time since the group’s formation as a result of the “Integrating Zooarchaeology and Stable Isotope Analyses” conference held at Cambridge University in June 2012. We’ve  grown to just about 100 members, and welcomed Catherine West (Department of Archaeology, Boston University) on board as a joint group coordinator. We discussed the development of our existing group website, including the addition of a “Project Page” that will highlight ongoing research projects integrating zooarchaeology and stable isotope analyses and will serve as a resource for students and potential research collaborators. In addition, the website already features a blog, which is always open to new content! [We’re currently looking for submissions, so please do get in touch!]

Another main point of discussion was the date and venue for the upcoming working group meeting, slated for early in 2016. Keep an eye out for an announcement in the Spring newsletter with further details! Finally, the formation of a Faunal Stable Isotope Database, to be integrated with the Neotoma Paleoecology Database (neotomadb.org), was discussed. At this point in time the discussion concerns types of data to be included, data format, and protocols surrounding submission to the database.  Interested members of the working group will be involved in these larger issues, while 2-3 data stewards would be directly involved in data management as development progresses.

To stay up to date with the latest goings-on in SIZWG, suggest a conference venue, or become involved with database building, you can join our listserv, visit the website at sizwg.wordpress.org, or get in touch with Suzanne Pilaar Birch (sepbirch[at]uga.edu) or Catherine West (cfwest[at]bu.edu).

-Suzanne Pilaar Birch (SIZWG Liaison), Department of Anthropology and Department of Geography, University of Georgia, USA

Stable Isotopes in Zooarchaeology Working Group Meeting at ICAZ

The Stable Isotopes in Zooarchaeology Working Group will be having a meeting during the upcoming ICAZ conference in San Rafael, Argentina, 22-27 September 2014. We will meet on Wednesday afternoon, from 17:50 – 19:10 (5:50 PM-7:10 PM) in Auditorio B at the Convention Center. Points to be discussed include future working group meetings, group organization, and the creation and management of a stable isotope database that will be linked to the Neotoma Paleoecology Database (Geochemistry and Isotopes Workgroup). See you there!

Fish for the City

We’re back with new blog posts after a short summer hiatus. Our first post of the academic year (which has already begun for some of us in the US!) comes from David Orton, who is currently an Early Career Research Fellow on the EUROFARM project at University College London, where he is also a Teaching Fellow in Zooarchaeology. Here he shares research that was conducted during his previous postdoctoral fellowship at the McDonald Institute for Archaeological Research at the University of Cambridge, which was recently published in Antiquity.

A Meta-analysis of Archaeological Cod Remains as a Tool for Understanding the Growth of London’s Northern Trade

The backstory to this research comes in two parts. First, a landmark zooarchaeological study by James Barrett and colleagues (2004) demonstrated an explosion in marine fish consumption in England within a few decades of AD1000.  Before this event – dubbed the ‘Fish Event Horizon’ (FEH) in tribute to Douglas Adams – sea fishing seems to have been rare and small-scale.

http://creativecommons.org/licenses/by/3.0/
Potential source regions and isotopic signatures for archaeological cod bones. Cross-hairs show one standard deviation ranges. Images taken from Orton et al. 2011 under CC BY license.

Second, James and his team applied stable isotope provenancing of cod bones to test whether this FEH represented a local phenomenon or the early onset of long distance trade from northern waters (full disclosure: I joined the project towards the end of this stage, in 2010). δ13C and δ15N signatures were established for six potential fishing regions using 259 samples from more than 10 countries. Applying this ‘target’ specimens from 23 (post)medieval sites around the North Sea (Barrett et al. 2011) and Baltic (Orton et al. 2011), we showed that a significant trade in northern cod existed by the 13th-14th centuries, but that the initial FEH in England primarily entailed local fishing. This raised more questions: when exactly did the trade start, how suddenly, and did the imported fish supplement or replace local catches?

Our new study, just published in Antiquity, combines a new zooarchaeological meta-analysis with the existing isotopic results to tell a clear story regarding cod imports to the city of London. Both elements rely on the same principle: that cod were traditionally decapitated before preservation for long-range trade, and that cranial elements thus normally represent relatively local catches. This allowed us to use head bones to establish regional isotopic signatures in the previous isotope work, but it also means that the cranial:postcranial ratio in consumer sites like London can be a rough index for the relative contribution of imports. We simply compiled all the raw data we could find on well-dated cod bones – almost 3000 specimens from 95 sites, including large datasets from Alison Locker and from MOLA – and plotted it using context-level date ranges.

http://creativecommons.org/licenses/by/3.0/
Stable isotopic provenancing results for 34 archaeological cod vertebrae and cleithra from various London sites (A; data from Barrett et al. 2011) set against AD 700–1700 detail of the estimated frequency distributions (B). Figure taken from Orton et al. 2014 under CC BY license.

The data show a very sudden switch to imports in the early/mid 13th C, with frequency of cranial bones dropping off just as the number of vertebrae increases sharply. This fits the isotopic results remarkably well: before about AD1250 almost all sampled specimens seem to be local; afterwards the majority are probable imports. Locally caught cod thus seem to have been substantially and rapidly replaced in Londoners’ diet by traded fish almost 800 years ago. What this meant for the local fishing industry is uncertain, but should become clearer when we look at other towns and species.

Biomolecular provenancing has a unique ability to provide direct evidence for the source of imported bones, but its cost and destructiveness ultimately limit sample sizes and hence the reliability and resolution of the stories it can tell. Integrating it with the much larger samples that can be marshalled from meta-analyses of conventional zooarchaeological data has great potential to overcome this problem.

REFERENCES

Orton DC, Morris J, Locker A and Barrett JH (2014) Fish for the City: meta-analysis of archaeological cod remains as a tool for understanding the growth of London’s northern trade. Antiquity 88, 516-530.
[link: http://antiquity.ac.uk/ant/088/ant0880516.htm%5D

Orton DC, Makowiecki D, de Roo T, Johnstone C, Harland J, Jonsson L et al. (2011) Stable Isotope Evidence for Late Medieval (14th–15th C) Origins of the Eastern Baltic Cod (Gadus morhua) Fishery. PLoS ONE 6, e27568.
[DOI: 10.1371/journal.pone.0027568]

Barrett J, Orton D, Johnstone C, Harland J, Van Neer W, Ervynck A et al. (2011) Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. Journal of Archaeological Science 38, 1516-24.
[DOI: 10.1016/j.jas.2011.02.017]

Barrett JH, Locker AM, and Roberts CM (2004b) The origins of intensive marine fishing in medieval Europe: the English evidence. Proceedings of the Royal Society of London. Series B: Biological Sciences 271, 2417-21. [DOI: 10.1098/rspb.2004.2885]

From the Balkans to Barbuda

A number of new and exciting projects are focused on incorporating several techniques in zooarchaeology, including stable isotope analysis, to better understand the complex and intertwined history of humans and certain animals. In this post, Dr. Holly Miller shares some of the goals of one such ongoing research scheme: The Fallow Deer Project.

The Fallow Deer Project

The Fallow Deer Project is an AHRC-funded multi-disciplinary study looking at the cultural history of Dama dama dama, the European fallow deer. As one of two Research Fellows on the project, my role is to investigate the biogeography and management of fallow deer through time. To do this, I am using a combination of isotope analyses (C, N, Sr, S, O) to look in depth at the archaeological remains of ancient and modern fallow deer populations, investigating questions related to the importation of animals, founding herds and changing management practices. Were fallow deer domesticated? Under what circumstances were fallow deer established across Europe? How do human-Dama relationships reveal worldview?

The Fallow Deer Project Logo
The Fallow Deer Project Logo

No other species of deer has a closer relationship to people than the European fallow deer, and it is becoming clear that this has been the case for millennia. Since the Neolithic, humans have selectively transported and maintained these elegant animals, moving herds from their native, post-glaciation, range in the eastern Mediterranean, across Europe and eventually the globe. Fallow deer are now one of the world’s most widely-naturalised animals. Wherever they have been introduced they have altered the physical and psychological landscape, and their distribution is a direct record of human migration, trade, behaviour and ideology. In combination with studies of archaeology, history, geography, anthropology, genetics, and osteological research, isotope analysis is being used reveal the cultural significance of the fallow deer as they moved from the Balkans to Barbuda, and everywhere in between.

Assorted fallow deer bones
Assorted fallow deer bones

The project is led by Dr Naomi Sykes (University of Nottingham) Prof. Rus Hoelzel (University of Durham) and Prof. Jane Evans (British Geological Survey). The team are working with researchers from a number of fields and institutions up and down the UK- from archaeologists and art historians, to musicians and deer stalkers.

Web: http://www.fallow-deer-project.net

Tweet: @DeerProject

Make use of/contribute to our deer bone database: http://www.nottingham.ac.uk/zooarchaeology/deer_bone/search.php

Climate in Your Dinner

Our latest contributor is Georgia Roberts. Georgia is currently in the second year of her PhD at La Trobe University, Melbourne, Australia, and holds a Masters in Archaeological Science from Australian National University.

Investigations of Seasonality in the Archaeological Record of Southwestern Tasmania, Australia

Stable isotope analysis can support a range of zooarchaeological research. One such application is investigating seasonality – assessing the season of death of individual animals. When these animals are associated with archaeological sites, we can use this data to infer season of site use.

The rugged limestone karst landscape of southwestern Tasmania, Australia, contains several archaeological cave sites with exceptional preservation. This region has been described as an archaeological ‘province’ sharing many characteristics, including distinctive faunal collections, dominated by Bennett’s wallaby (70% by Minimum Number of Individual [MNI] counts) and the Common Wombat (27% MNI). The current project focusses on two of these sites – Warreen Cave and Bone Cave.

Related archaeological sites in southwestern Tasmania. Adapted from Cosgrove et al. 2010.
Related archaeological sites in southwestern Tasmania. Adapted from Cosgrove et al. 2010.
The wilderness of southwestern Tasmania.
The wilderness of southwestern Tasmania.

Wombat teeth are continuously growing, capturing the isotopic signature of the surrounding environment in the enamel as it forms. The mandibular incisor is the longest tooth (6-7cm) and records approximately 18 months of isotopic data. By sequentially sampling the enamel, a high-resolution record of local climate (δ18O) and vegetation (δ13C) can be retrieved. By assessing seasonal variation in modern analogues, the data can be used to determine season of death and thus inferred season of site use.

Sequential sampling of tooth enamel along the mandibular incisor from a modern Common wombat.
Sequential sampling of tooth enamel along the mandibular incisor from a modern Common wombat.

Dr Anne Pike-Tay and colleagues (Pike-Tay et al. 2008) used odontochronological analysis to identify that Bennett’s wallabies, the primary prey species, had been killed in the same season throughout the chronology of each site – autumn/winter for Warreen Cave and summer for Bone cave. My PhD uses stable isotopic analysis of Common wombat (Vombatus ursinus) teeth to test this trend, investigating when and how wombats were being utilised by Tasmanian Aboriginal people at the end of the Pleistocene (35,000 to 11,500 years ago).

Tasmanian Common Wombats – female with joey.
Tasmanian Common Wombats – female with joey.

This research is supported by the La Trobe University Faculty of Humanities and Social Sciences Internal Funding Scheme, the Australian Archaeological Association Research Grant Scheme and Dr Michael Gagan of the Earth Environment Stable Isotope Laboratories (Australian National University).

References

Cosgrove, R., Field, J., Garvey, J., Brenner-Coltrain, J., Goede, A., Charles, B., Wroe, S., Pike-Tay, A., Grün, R., Aubert, M., Lees, W., O’Connell, J., 2010. Overdone overkill – the archaeological perspective on Tasmanian megafaunal extinctions. Journal of Archaeological Science 37, 2486–2503.

Pike-Tay, A., Cosgrove, R., Garvey, J., 2008. Systematic seasonal land use by late Pleistocene Tasmanian Aborigines. Journal of Archaeological Science 35, 2532–2544.

Introducing the i-bone Project

This contribution comes from Dr. Thomas Doppler, who is based at the University of Basel, Switzerland, at the Integrative Prähistorische und Naturwissenschaftliche Archäologie (IPNA) (Integrative Prehistory and Archaeological Science) and the Department of Environmental Sciences. We’ve also added the IPNA to our list of stable isotope facilities-get in touch if we’re missing yours!

Isotope analysis of well dated cattle and red deer bones from Swiss Neolithic lakeshore settlements as indicator for herd management, dairying, environment and human impact

The project (April 2013 to March 2016, based at the University of Basel, Switzerland) aims at studying cattle economy and cattle management on one hand and human impact on the red deer population on the other, as represented in the archaeology of the Swiss lakeshore dwellings.

Organic remains are well preserved at the site of Arbon Bleiche 3. Photograph: © Amt für Archäologie Thurgau, Daniel Steiner.
Organic remains are well preserved at the site of Arbon Bleiche 3. Photograph: © Amt für Archäologie Thurgau, Daniel Steiner.

These dwellings – dated between 4300 and 2400 BC – have the richest and most detailed archaeological record in Europe, and provide a unique background for the examination of models of subsistence, intensification, cultural adaptations to climatic changes and human impact to the prehistoric environment. Waterlogged deposits have preserved many organic remains such as wood, seeds, animal dung; and hundreds of thousands of animal bones have been recovered. Based on dendrochronology the archaeological finds can be dated precisely at least to decades but even to single years, allowing a longitudinal study with unprecedented time resolution.

We focus our research on the eastern area of Switzerland, especially on the lakeshore settlement of Arbon Bleiche 3 at Lake Constance and sites in the lower Lake Zurich region, where vast and well documented archaeozoological collections cover a long chronological sequence of settlements in a small and clearly defined region.

Map showing the location of the study sites in Switzerland, including Arbon Bleiche 3 at Lake Constance and a range of sites in the lower Lake Zurich region. Figure: © IPNA, Thomas Doppler.
Map showing the location of the study sites in Switzerland, including Arbon Bleiche 3 at Lake Constance and a range of sites in the lower Lake Zurich region. Figure: © IPNA, Thomas Doppler.

The research questions will be addressed using carbon, nitrogen, oxygen and strontium isotope analyses on animal bones and high-crowned cattle and deer molars.

The project is financed by Swiss National Science Foundation and supported by different institutions in Switzerland, Germany and Great Britain. For further information see www.i-bone.ch

 

Chickens from Beyond the Grave

We’re continuing our series of posts this month with a piece by Elizabeth Farebrother, who is currently working towards her PhD at University College London investigating changing animal use in Western Asia during the Neolithic and Bronze Ages. Here, she shares her MSc research, which was part of the ongoing, multidisciplinary Chicken Project. Thanks to Liz and the Chicken Project Team for contributing!


An Integrated Faunal-centric approach to Stable Isotope Analysis at Wien-Csokorgasse Cemetery   

The integration of zooarchaeological research and stable isotope analysis can be incredibly insightful, allowing us to go beyond traditional research questions, and investigate, where relevant, socially-grounded questions from a scientific perspective. My introduction to the world of stable isotope research came through the AHRC-funded Chicken Project, and my MSc formed part of this ongoing collaborative research initiative to investigate human-fowl interaction.

Belle, a Nottingham local
Belle, a Nottingham local.

Wien-Csokorgasse – an Avar-period (6th-8th Century AD) cemetery site – is located in Vienna, Austria, and was excavated as a rescue operation in the 1970s. Zooarchaeologist Henriette Kroll carried out the faunal analysis for the site, and noted that the deposition of chickens within human burial contexts was both sexually, and hierarchically stratified; cocks were buried with males and hens were buried with females. Significantly, the length of each cockerel’s tarsometatarsus spur also corresponded with the inferred status of the human burial (Kroll, 2013).

Chicken bone is demineralised in order to extract the collagen for isotopic analysis.
Chicken bone is demineralised in order to extract the collagen for isotopic analysis.

To investigate the potential reasons for the inclusion of chickens within burials at Wien-Csokorgasse, carbon and nitrogen isotope ratios from the bone collagen of each bird were analysed and compared with the existing stable isotope study of the humans they were buried with (Herold, 2008). Prospective indicators for dietary differentiation, including biological sex, age, and cemetery chronology were explored. Perhaps the most striking result was the dietary correlation represented by δ15N values. This dietary signature would have built up in the bone collagen over differing life spans between human and chicken. To this end, the data suggest a significant overlapping period of time where each chicken may have lived alongside the human individual they were buried with.

Preliminary carbon and nitrogen isotope results for human burials and associated chickens.
Preliminary carbon and nitrogen isotope results for human burials and associated chickens.

The results of dietary stable isotope analysis were viewed through the lens of anthropological analogy, and interpretation included a diachronic survey of published and grey literature of contemporary bird iconography and bird diet in Europe. This meant that the wider social implications and behavioural patterns amongst the groups who used Wien-Csokorgasse were also considered in the study.

Acknowledgements:

Thank you to all involved in the production of this MSc dissertation. This study would not have been possible without the help and expert guidance of the AHRC-funded Chicken Project, Dr Naomi Sykes, Dr Holly Miller, Dr Henriette Kroll, the NERC Isotope Geosciences Laboratory (BGS Keyworth) and the University of Nottingham.

References

Herold, M. (2008) ‘Sex Differences in Mortality in Lower Austria and Vienna in the Early Medieval Period’ Doctoral dissertation, University of Vienna.

Kroll, H. (2013) ‘Ihrer Hühner waren drei und ein stolzer Hahn dabei: Überlegungen zur Beigabe von Hühnern im awarischen Gräberfeld an der Wiener Csokorgasse.’ in von Carnap-Bornheim, C., Dörfler, W., Kirleis, W., Müller, J. and Müller, U. (eds.) Festschrift für Helmut Johannes Kroll. Offa 69/70.

Rethinking Mycenaean Economy

Stable isotope analysis in zooarchaeology is an exciting–and growing–research area, with the potential to inform and expand on  a multitude of questions about humanity in the past, present, and future.

Part of the mission of the working group and the purpose of our blog is to share ongoing research in this area with a wider audience. To that end, we’re launching a series of posts on current projects combining zooarchaeology and stable isotope analysis in innovative ways around the world and in all time periods. If you would like to contribute a post on your research, you can email suzanne_birch [at] brown.edu. Comments and questions on posts are welcomed and encouraged!

Our first post is by Gypsy Price, who is currently a PhD candidate in the Anthropology Department at the University of Florida. Her research uses stable isotope analysis to reveal differences in faunal economies in early complex societies, specifically Late Bronze Age (LBA) Mycenae, Greece. Thanks Gypsy!

Faunal Economy at Petsas House

View of Mycenae, with a plan of the citadel and location of Petsas House indicated by the red circle.
View of Mycenae, with a plan of the citadel and location of Petsas House indicated by the red circle.

Five years ago I got involved with the Petsas House Project, a domestic/industrial structure located downslope from the citadel of Mycenae dating to the Late Helladic III A2 (circa 1300 BC). Around the same time I had become increasingly captivated by Galaty and Parkinson’s “Rethinking Mycenaean Palaces” series which critically examined the extent, degree, and manner of economic authority engendered by Mycenaean palaces. Bottom line, the majority of our knowledge about Mycenaean economy is based on Linear B tablets, which are geographically, temporally, and topically restricted: they have only been recovered from a handful of palatial sites, and record only transactions of interest to palatial administration occurring in the months prior to their deposition. As a result, economic models have been constructed from the top down, resulting in a myopic sense of the movement of resources within the larger society and an artificial inflation of the influence of the palace.

Through isotopic survey, we can discern feeding groups that may be indicative of disparities in provisioning or foddering strategies, and patterns of importation of animals. It was here where I realized that the extremely well-preserved and extensive faunal assemblage at Petsas House could offer a unique, micro-scalar perspective on management and distribution of faunal resources in an extra-palatial industrial/domestic context with a palatial settlement. Furthermore, there was an available contemporaneous faunal assemblage which had been previously excavated from the Cult Center, an ideological complex located within the walls of the hilltop citadel.

Gypsy Price with Petsas House materials
Gypsy Price with Petsas House materials.

Thus, with the invaluable support of Dr. Kim Shelton (UC Berkeley) and my committee chair, Dr. John Krigbaum (University of Florida), my PhD research was born. My sample set includes four main species known to have been purposefully managed during the LBA: goat, sheep, cow, and pig/wild boar. I am using carbon (δ13C), nitrogen (δ15N), and oxygen (δ18O) ratios from bone collagen and bone apatite fractions to identify discrete inter- and intra-taxonomic feeding groups. Strontium (87Sr/86Sr) and oxygen (δ18O) isotope ratios from bone and serially sampled teeth are being used to identify season movement patterns and to look for evidence of extra-local individuals which may be indicative of importation. I am currently in the process of interpreting the structured variation in these data to elucidate some of the nuances of LBA Mycenaean faunal economy, allowing us to develop a “ground-truthed” model of management and distribution between disparate sectors of a single LBA Mycenaean palatial settlement for the first time.